Fredholm transform and local rapid stabilization for a Kuramoto–Sivashinsky equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fredholm transform and local rapid stabilization for a Kuramoto–Sivashinsky equation

This paper is devoted to the study of the local rapid exponential stabilization problem for a controlled Kuramoto–Sivashinsky equation on a bounded interval. We build a feedback control law to force the solution of the closed-loop system to decay exponentially to zero with arbitrarily prescribed decay rates, provided that the initial datum is small enough. Our approach uses a method we introduc...

متن کامل

A Numerical Method for Solving Stochastic Volterra-Fredholm Integral Equation

In this paper, we propose a numerical method based on the generalized hat functions (GHFs) and improved hat functions (IHFs) to find numerical solutions for stochastic Volterra-Fredholm integral equation. To do so, all known and unknown functions are expanded in terms of basic functions and replaced in the original equation. The operational matrices of both basic functions are calculated and em...

متن کامل

Rapid Exponential Stabilization for a Linear Korteweg-de Vries Equation

We consider a control system for a Korteweg-de Vries equation with homogeneous Dirichlet boundary conditions and Neumann boundary control. We address the rapid exponential stabilization problem. More precisely, we build some feedback laws forcing the solutions of the closed-loop system to decay exponentially to zero with arbitrarily prescribed decay rates. We also perform some numerical computa...

متن کامل

Spatial Analyticity on the Global Attractor for the KuramotoSivashinsky Equation

For the Kuramoto Sivashinsky equation with L-periodic boundary conditions we show that the radius of space analyticity on the global attractor is lowersemicontinuous function at the stationary solutions, and thereby deduce the existence of a neighborhood in the global attractor of the set of all stationary solutions in which the radius of analyticity is independent of the bifurcation parameter ...

متن کامل

Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right

This paper is devoted to the study of the rapid exponential stabilization problem for a controlled Korteweg-de Vries equation on a bounded interval with homogeneous Dirichlet boundary conditions and Neumann boundary control at the right endpoint of the interval. For every noncritical length, we build a feedback control law to force the solution of the closed-loop system to decay exponentially t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2015

ISSN: 0022-0396

DOI: 10.1016/j.jde.2015.05.001